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An algorithm is developed, based on the theory of regularization and on spline 
approximation, to estimate the absolute permeability in two-phase petroleum reservoirs from 
noisy well pressure data. The regularization feature of the algorithm converts the ill-posed 
estimation problem to a well-posed one. The algorithm, which employs the partial conjugate 
gradient method of Nazareth as its core minimization technique, automatically chooses the 
regularization parameter based on the non-regularized estimation. It is shown that regularized 
estimation is more stable and insensitive to the choice of initial guess as compared to non- 
regularized conventional estimation. 1 1987 Acadrmlc Pros. Inc 

1. INTRODUCTION 

The spatial distribution of the properties of petroleum reservoirs cannot be 
measured directly; rather they must be inferred from matching the observed reser- 
voir behavior to that predicted by a mathematical model. A reservoir that can be 
modeled as containing a single phase, e.g., oil, leads to a single linear PDE of heat 
conduction type for the pressure. Although the single-phase reservoir is clearly the 
first step in addressing reservoir parameter estimation problems, from the point of 
view of practical application, one really must consider two- (oil and water) and 
three- (gas, oil, and water) phase reservoirs. In this paper we present a comprehen- 
sive study of the estimation of two-phase petroleum reservoir properties. 

The estimation of reservoir properties such as permeability and porosity based on 
measurements of pressure and production data at wells is an ill-posed problem, as it 
is neither unique nor continuously dependent on the measured data. Considerable 
effort has been devoted recently to attempting to develop well-posed algorithms for 
estimating petroleum reservoir properties. The critical problems in generating an 
effective algorithm for reservoir parameter estimation are twofold: (1 ) The original 
problem must be defined in a manner that alleviates the ill-posed nature of the 
problem; and (2) An efficient computational algorithm must be developed for solv- 
ing the large, constrained, nonlinear minimization problem that results. 

With respect to the inherent ill-posedness of the reservoir parameter estimation 
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problem, Kravaris and Seinfeld [ 10, 1 l] have shown that the concept of 
regularization can be extended to the estimation of spatially varying parameters in 
partial differential equations of parabolic type, and Lee et al. [12] applied the 
approach to estimating parameters in single-phase (oil) reservoirs. The 
regularization idea, first advanced by Tikhonov [19], has been widely used in the 
solution of ill-posed integral equations, but had not heretofore been developed for 
the estimation of parameters in partial differential equations. In short, 
regularization of a problem refers to solving a related problem, called the 
regularized problem, whose solution is more “regular” (in a certain sense) than the 
solution of the original problem and approximate (in a certain sense) the solution 
of the original problem. More precisely, regularization of an ill-posed problem 
refers to solving a well-posed problem, whose solution gives a physically meaningful 
answer to the original ill-posed problem. The regularization formulation of 
parameter estimation measures the “non-smoothness” of the estimated parameter as 
a norm of the parameter in an appropriate Hilbert space. No prior information 
about the parameter is required other than a general idea of the degree of 
smoothness desired in the estimated field. The only unspecified parameter is that 
reflecting the relative weight given to the smoothness norm versus the usual least- 
squares objective function. 

In the present context, the regularized problem is to find the parameters that 
minimize a performance index, called the smoothing functional, J,,, that consists 
of the weighted sum of the conventional least-squares discrepancy term, J,,, and a 
term that penalizes non-smoothness of the parameters, called the stabilizing 
functional, J,, Thus 

J,, = J,, + BJm (1) 

where /3 is the weighting coefficient, called the regularization parameter, chosen to 
reflect the degree of importance ascribed to J,,. 

The second major problem posed above is that of generating an efficient com- 
putational algorithm. Because the properties in an inhomogeneous reservoir vary 
with location, conceptually an infinite number of parameters are required for a full 
description of the reservoir. From a computational point of view, a reservoir model 
contains only a finite number of parameters, corresponding to each grid block or 
element in the spatial domain. In field scale simulations, it is not unusual for the 
reservoir domain to consist of the order of 10,000 grid cells, and consequently 
20,000 or more parameters may need to be estimated simultaneously. 

Banks and co-workers [2-51 and Kravaris and Seinfeld [ 111 have shown that 
an effective way to represent the spatial variation of unknown parameters in PDE’s 
is by spline approximation. Then the parameter estimation problem reduces to 
determining the coefficients in the spline approximation. An important com- 
putational question concerns the choice of the spline parameter grid relative to the 
grid employed for the numerical solution of the governing PDEs. 

This paper is a comprehensive study of the estimation of parameters in two-phase 
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(oil-water) petroleum reservoirs. The numerical aspects of the problem will be con- 
sidered in detail including (1) the choice of the stabilizing functional, (2) the choice 
of the regularization parameter, (3) the choice of the spline grid, and (4) the 
development of a computationally efficient algorithm. 

2. MATHEMATICAL MODEL OF TWO-PHASE PETROLEUM RESERVOIR 

We consider a two-phase water-oil reservoir which has a sufticiently large area1 
extent so that we can assume that the pressure change and hence flow in the ver- 
tical direction is negligible compared to flow in the other two directions [ 11. If the 
water and oil phases are immiscible, then the equations of mass conservation for 
water and oil phases are given by 

Rw = - $ (P,W,) - V. (P,v,) + ? pwq,, 6(~-xK)~(Y-Y,)=o (2a) 
IL=1 h 

Ro = - f (P,@,) -V. (P,v,) + 2 poqo, 
~(x-xKPb-YK)=O 

h 
(2.b) 

h.=l 

for (x, y) E 52 c %* and for 0 < t < T and the linear velocities of the two fluid phases 
are represented by Darcy’s law for flow in porous media 

kk 
v,= - --=vp 

Pu, 

kk 
v,= - ?Vp, 

PO 

(3.a) 

(3.b) 

where 

s,+s,= 1. (4) 

The initial conditions are 

P(X> Y? 0) = PO (5) 

sw(x? Y, O) = si, (6) 

for (x, I’) E 52 and the no flux boundary condition 

n.Vp=O (7) 

is assumed to hold for (x, y) E 8Q and for 0 < t < T. The relative permeabilities of 
water and oil pha,-es are functions of saturation, relatively general forms of which, 
and those employed here, are 
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(8.a 

(8.b 

respectively, where the coefficients a, , u,, h,, and h, are constants independent of 
location. 

3. DEFINITION OF THE PARAMETER ESTIMATION PROBLEM 

The reservoir parameter estimation problem can be considered as solving an 
inverse problem involving the nonlinear operator equation 

Kcx = u,, (9) 

where c( is the unknown reservoir parameter, ug is the noisy pressure and produc- 
tion data measured at the observation wells, and the operator K is the reservoir 
model. 

In a multi-phase petroleum reservoir, the parameter CI being estimated can in 
theory be the absolute permeability (k), porosity (d), or coefficients appearing in 
the expressions for the relative permeabilities (k,, and k,,). In general, the porosity 
is better known from log and well data than is the absolute permeability, and the 
functional form of relative permeabilities are frequently given as shown in Eq. (8), 
so that the unknowns are the coefficients in the relative permeability expressions 
(a, or a,, h,, and h,) which are independent of location. In the present work we 
focus on the estimation of absolute permeability assuming the porosity and relative 
permeabilities are known so that the reservoir model K includes the reservoir model 
equations, Eqs. (2)-(8), known parameters (4, k,,, and k,,), and the numerical 
solution scheme. This inverse problem is often referred to in the petroleum 
literature as “history matching” since the parameter is to be estimated from the 
measured transient history of pressure and production data at wells distributed over 
the reservoir domain. 

Often there is no solution CY that satisfies Eq. (9) exactly nor is the operator K 
directly invertible. Thus the inverse problem is stated as one of minimizing the error 
in approximating Eq. (9). As we have noted, the parameter is usually replaced by a 
finite (but usually large) number of new parameters by finite difference [8, 173 or 
spline approximation [2-51. 

Conventional least-squares estimation seeks the parameter that minimizes the 
discrepancy between pressure and production data, 

.I,,= /(KGu,I/‘. (10) 

The performance function J,, is generally non-convex, minimized over a large 
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number of variables, and insensitive to changes in the parameters. As a con- 
sequence, the parameter estimates are (1) dependent on the given initial guess, (2) 
highly oscillatory and dependent on the grid system chosen for numerical solution, 
and (3) not continuously dependent on the measured data. Thus the inverse 
problem is “ill-posed” in the sense that the estimation of the parameters is neither 
unique nor stable. 

Regularization of an ill-posed parameter estimation problem leads to penalizing 
the undesired features (non-smoothness) of the parameter estimates. In 
regularization the stabilizing functional represents non-smoothness of the 
parameter, 

JST = II La II ?w(Q)> (11) 

where L is either identity or a differential operator and HCL’(Q) is an appropriate 
Sobolev space. The total performance index is then the smoothing functional given 
in Eq. (1) which now becomes 

where the regularization parameter, /I, measures the relative weight of the penalty 
on the non-smoothness compared to the discrepancy in matching data. 

Tikhonov’s stabilizing functional [ 18, 191 is defined as the Sobolev norm of the 
unknown parameter. When we use spline approximation with cubic B-spline 
functions for representing the unknown parameter, a(x, y), Tikhonov’s stabilizing 
functional is given by 1) a //&), where the Sobolev space H3(Q) is the set of 
functions that are square-integrable over Q and have square-integrable derivatives 
up to order 3 [ 11, 121. More precisely this stabilizing functional is given by 

J,, = ; i,JkY’ (13) 
m = 0 

where Jr;), m = O,..., 3, represents m th order derivative terms given by 

(14) 

with dimensionless space variables r =.x/Ax and q= y/Ay, and the coefficients i,,,, 
m=O, 1, 2, and 3, satisfy (1) [,>O for m=O,..., 3 [18]; or (2) [,>O for m=O, 1, 
and 2 and i3>0 [19]. 

In practical applications of the theory of regularization, as Trummer [20] has 
pointed out, Tikhonov’s stabilizing functional can lead to underestimation of the 
parameter value itself owing to the term JpG in Eq. (13), which is the usual 
Euclidean norm of the parameter. Locker and Prenter [ 131 suggested 
regularization with a differential operator defined by II Lk Ij$,LICRI for the linear least- 
squares problem so that the stabilizing functional is the norm of derivatives of the 
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parameter in the Sobolev space. When the operator L in Eq. (11) is equal to the 
two-dimensional gradient V, Locker and Prenter’s stabilizing functional becomes 

where Ji$‘, m = l,..., 3, is the same as above and the coefficients i,,,, m = l,..., 3, 
satisfy [ 1 > 0, cZ >, 0, and c3 > 0 so that it does not include the Euclidean norm of 
the parameter. 

The choice of values of <,,, in Eqs. (13) and (15) is arbitrary except for the 
inequality conditions given above. One possible choice of [,,,‘s is based on the 
length scales used for the finite difference approximation of the PDEs, d.u and dy. 
We will subsequently use [, = cZ = [3 = 1 in Eqs. (13) and (15), while the choice of 
co will be examined in the computational results. 

A traditional question in the use of regularization to solve ill-posed problems is 
the choice of the regularization parameter /?. Clearly p = 0 corresponds to the non- 
regularized problem, while fi + cc would lead to a physically unrealistic solution. 
Miller [ 141 suggested a way of determining the regularization parameter /I from 
the ratio of an upper bound of J,, values evaluated from the measured data (say 
z) to a upper bound of Jsr (say G). In this study, assuming that neither J,, nor 
G is available a priori, we will develop “a rule of thumb” to determine Miller’s 
choice of /3 within our framework of regularization and spline approximation. 
Extensive numerical tests show that, for the solutions of non-regularized (/?=O) 
and regularized (/3>0) problems when the spline approximation is used for both 
cases, 

(a) JLs does not vary significantly for a wide range of fl>, 0 and the values of 
J,, are close to the observation error in magnitude. 

(b) J,, generally decreases as /I increases and JsT at fi = 0 in somewhat larger 
than the values of J,, evaluated for the true profile. 

This observation suggests that the value JLs/J,, calculated from the non- 
regularized (fl= 0) estimation can be used as an approximation of the optimal 
regularization parameter. We will discuss later in this paper how this idea can be 
implemented in the estimation algorithm. 

One might define a “quasi-optimal” value of the regularization parameter as a 
p> 0 such that parameter estimates are minimally sensitive to the (logarithmic) 
change of ,I3, i.e., J,,(~(ib/d~)) is a minimum [ 191. The numerical algorithm to find 
such a quasi-optimal fi requires repeated solution of the regularized problem for dif- 
ferent /I’s, Although we will later examine the effect on the estimates of the value of 
8, we will not use this particular strategy. 

The intuitive idea of Generalized Cross Validation (GCV) is to find a fl at which 
the parameter estimate gives the best prediction of unobserved data values. For that 
purpose, a GCV function is defined and minimized over /I > 0 [9]. To apply this 
idea to reservoir parameter estimation one needs the parametric sensitivity of 
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pressure and production data, the calculation of which is specifically avoided in our 
estimation algorithm for computational efficiency. Thus, we will not consider the 
selection of /I by GCV. 

4. SPLINE APPROXIMATION OF UNKNOWN PARAMETERS 

A general approach to representing the spatial variation of the unknown 
parameters is through the use of bicubic spline functions, in which the parameter 
X(X, ~9) is represented as 

‘V,, N,, 
4x, Y) = c 1 h,(l,, x) W,,,,,~,.(~.,., y), (16) 

I, = I i, = I 

where 

h,(l,> xl = x ‘“(4-1,+e), I,= 1,2 ,..., N.,, 

ul,.> I’) = x “(4~lx+&); I,,.= 1,2 ,..., NJ,, 

(17) 

(18) 

and where x*4(. ) is the cubic B-spline function. dx, and dy, are the grid distance of 
the spline grid along x- and y-directions, respectively. With this approximation, 
a(-~, J’) is replaced by the set of unknown coefficients, W ,,,,,, I, = 1, 2 ,..., N,, and 
I, = 1, 2 ,..., N,,. 

The grid used for spline representation of the unknown properties need not 
necessarily coincide with that on which the actual reservoir model is solved. In 
general, the number of coefficients for spline representation should not exceed either 
the number of grid cells for the PDE or the number of available data. If too few 
coefficients are employed for the spline approximation, the functional derivative of 
J,, with respect to the absolute permeability given by Eq. (B7) in Appendix B can- 
not be properly represented by the derivative of JLs with respect to the spline coef- 
ficients during the minimization of J,, , and this may slow the rate of convergence. 
Hence, we will employ a spline grid system as dense as that for the reservoir PDEs 
with a minimizing algorithm that is suitable for a system with large dimensionality. 

5. NUMERICAL ALGORITHM 

The problem we now seek to solve is to minimize the augmented objective fun- 
citon JSM with respect to the spline coiefficients W,x ,,,, 1, = 1, 2 ,..., N,, and 
I,.= 1, 2 ,..., N,,, subject to Eqs. (2))(8). To obtain an algorithm to solve this 
problem two steps are required. First, we must compute the gradient of J,, with 
respect to each W,,,,,, and second, that gradient is then used in a numerical 
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minimization method to minimize J,,. The calculation of these gradients 
represents the most time consuming part of updating the parameter iterates. In a 
problem as large as the current one these derivatives must be able to be calculated 
directly. Seinfeld and co-workers [6, 8, 211 and Chavent, et al [7] have developed 
algorithms for estimating parameters in PDEs based on optimal control theory so 
that the algorithm requires only first order functional derivatives of the perfor- 
mance functional with respect to the parameter to be estimated and this approach 
is used here. To compute the functional derivative of J,, with respect to the 
absolute permeability, first solve the reservoir PDEs with given initial conditions at 
f = 0, then, as shown in Appendix B, solve the adjoint system equations, Eqs. (B3), 
(B4), backward with terminal constraints given by Eqs. (B5), (B6). At the end of 
each time step during the solution of adjoint system equations, compute i?.J,,/i?k,, 
i = I ,..., N, by Eq. (B7). 

For most multivariate minimization problems, from the point of view of com- 
putational efficiency, methods that require second order derivatives of the perfor- 
mance function are not recommended. As a result, various methods have been 
developed that utilize only first order derivatives, among which are conjugate 
gradient, quasi-Newton, and partial conjugate gradient methods. The conjugate 
gradient algorithm requires an exact line search to compute the length of each 
descent direction vector. Quasi-Newton methods use the inverse Hessian matrix to 
compute the descent vector, which requires a substantial amount of memory, 
although it does not require an exact line search. In general, quasi-Newton methods 
are preferred for relatively small problems, and conjugate gradient methods for 
large problems [ 161. On the other hand, partial conjugate gradient methods use 
about the same amount of memory as does the conjugate gradient method without 
requiring an exact line search, and show good performance over a range of problem 
sizes. In this study the partial conjugate gradient method of Nazareth [ 151 is used 
as the core minimization technique. 

An important question concerns starting the algorithm. Convergence difficulties 
are sometimes experienced when the initial guesses of the parameters are far from 
their actual values. To attempt to alleviate this problem and to generate an 
algorithm that is as “automatic” as possible, we begin the estimation by determin- 
ing the unknown parameter as uniform over the entire region. Thus, to start, we 
estimate a single value of k for the entire region that minimizes J,,. This value then 
serves as a starting point for the full estimation algorithm. The rationale behind this 
strategy is that convergence problems should not be encountered in estimating a 
single parameter. The single value, while not accurate in its spatial detail, 
nevertheless serves as a good starting point for the full algorithm 

Based on the foregoing discussion we suggest the following algorithm: 

Step 1. In the absence of u priori information on the unknown parameters, 
find the flat initial guess of the parameter, i.e., whose values are the same over the 
whole spatial domain, that minimizes J,,. 

Step 2. Using the initial guess of the parameter determined from Step 1, find 
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the spatially varying parameter that minimizes Jr, and compute the values of J,, 
and J,,. 

Step 3. Using the parameter profile and the values of J,, and JsT determined 
in Step 2, let /I = J,,/JsT and find the spatially varying parameter that minimizes 
JSM. 

6. COMPUTATIONAL EXAMPLES 

The remainder of this work is devoted to the numerical evaluation of the 
algorithm on the estimation of absolute permeability in a two-phase, two-dimen- 
sional reservoir, as described by Eqs. (2)-(g). We want to evaluate the algorithm on 
a well-defined test problem for which the “true” absolute permeability distribution 
is known a priori. For this reason, we will specify the true parameter values, 
generate the pressure data by solving the reservoir model with these values, and 
then try to recover the true parameter values by using the estimation algorithm. 

The specification of the reservoir is given in Table I, and its shape and well 
locations are shown in Fig, 1. The production rate at each of two production wells 
(denoted by “P”) is 3 x lOA’ m3/s, and the injection rate at each of six injection 
wells (denoted by “I”) is IO- 3 m’/s. The data were chosen so that the system is 
representative of actual reservoirs. To generate noisy measured pressure data at the 
observation wells we solve the reservoir PDEs for the presumed true absolute per- 

TABLE: I 

Specification of Reservoir Shown in Fig. I 

(I ) Fluid properties 

Compressibility (Pa ‘) 
Viscosity (Pa. s) 
Relative permeability 

Well flow rate 

Water 

1.94 x lo-’ 
10-3 
a, = 0.9 
h, = 2.5 
s,, = 0.1 

Oil 

0.97 x 1om9 
3 x 10-X 
a,= I.0 
h” = 2.0 
s,, = 0.2 

qh < 0 for production wells 

qh > 0 for injection wells 

(2) Rock and reservoir properties 

Compressibility (Pa ‘) 
Porosity 
Initial pressure (Pa) 
Reservoir dimension (m ‘) 

2.91 x 10 -9 
$;Fi7- 0.05 sin (2nx/x,) sin(ny/yt ) 

1500x 1000x10 
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750 1050 1350 

-l 

FIG. I. Shape of reservoir and location of wells. (I ) Injection and observation well, (P) production 
and observation well, (0) Observation well. 

meability profile and add a set of uniformly distributed pseudo-random numbers 
(which are generated by the IMSL subroutine GGNML on a VAX 1 l/780). 

The ill-posed nature of parameter estimation problems often leads to irregular 
estimated surfaces. In order to demonstrate this ill-conditioning, we will use the 
inclined plane shown in Fig. 2a as the true absolute permeability profile. We will 
also test the ability to recover a k surface of complicated geometry such as that 
shown in Fig. 2b. Since the k profile shown in Fig. 2a yields J$ = Jiy = 0 and that 

FIG. 2. Assumed absolute permeability profiles. (a) k =0.2 +0.2x/x,, (b) k =O.2 + 
o,Je~ ,4,.x, 111 -,z,,,, l,~+()2e ,A\,\, 31.7 ,2,',, I):, (c) k =0.3 -0.1 sin(2nx/x,) sin(ny/rL). 
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shown in Fig. 2b is inadequate to test ill-conditioned estimation in the middle of the 
domain, we use yet a third k surface, shown in Fig. 2c, for which J&y and J&y have 
nonzero finite values and for which irregular behavior of the estimates can be 
visualized over the whole reservoir domain. 

Throughout the numerical example, we use Locker and Prenter’s [ 131 stabilizing 
functional with differential operator (L -V and iI = l2 = [, = 1 ), the regularization 
parameter based on J,,/Jsr calculated from the non-regularized estimation, and a 
15 x 10 grid system for spline approximation, unless specified otherwise, with a 
PDE grid system of 15 x 10. Since absolute permeability can be estimated from 
pressure data alone [6], we use only pressure data in this study. The smoothing 
functional is minimized until the maximum value of the derivative of J,, with 
respect to the spline coefficients is less than 1jlOOOth of that for the flat initial guess 
of k. All computations were carried out on a CRAY X-MP/48. 

6.1. EFFECT OF INITIAL GUESS 

Since the uniqueness of the solution of the parameter estimation problem is not 
guaranteed and there may exist unidentifiable regions based on the configuration of 
measurements and the time period over which the data are available, convergence 
of the algorithm may depend on the given initial guess. 

The assumed true absolute permeability profile shown in Fig. 2a, 

k(x, y) = 0.2 + 0.2 $, (19) 

was estimated using 300 noisy pressure data from 15 wells (20 data from each well) 
measured over the period 0 < t < 1.3 yr. (The conversion unit of the absolute per- 
meability, used in Eq. (19) and thereafter, is the darcy (= 1.013 x lOI m’). For con- 
sistency of units, k in Eq. (3) is in units of square meters.) The flat k value described 

TABLE II 

Effect of Initial Guess on the Estimation of k Given by Eq. (19) 

Initial B CPU time 
guess of k (darciess’) JSM Jrs J,, J&y J&y J&q J&I (s)“ 

(a) 0.29 0 0.997 0.997 0.443 13.7 0.088 0.105 0.250 21.9 
(b) 0.1 +0.4r/x, 0 1.000 1.000 0.531 14.7 0.170 0.117 0.243 27.7 
(c) Converged solution of (a) 2.3 1.077 1.003 0.032 13.8 0.022 0.007 0.003 36.4 
(d) Converged solution of(b) 2.3 1.067 0.999 0.030 13.9 0.023 0.004 0.003 35.4 

True k 1.160h 1.099 0.027 14.0 0,027 0 0 

u CRAY X-MP/48. 
’ For /I = 2.3 darcies -‘. 
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liO,l-rcgh i/al .i ? :: ,!,il(.i<~. 

FIG. 3. Effect of initial guess on the estimation of k given by Eq. 30  7.754 0  T3i41c4Tw (k ) Tj
0  Tr 7.754 0  TD511  Tm
3  Tr lf
-6iI0.19 3  Tr -0.02F4L30  Tri3  Tr -0.1444  Tm
3  Tr l21970FELD 
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FIG. 4. Effect of spline grid on the estimation of k given by Eq. (20) for b = 0 (non-regularized) and 
/j = I .7 darcies ‘. 

TABLE III 

Effect of Spline Grid on the Estimation of k Given by Eq. (20) 

15x IO 
12x9 
9x7 
6x5 

I5 x 10 
12x9 
9x7 
6x5 

True X 

0 

0 

0 

0 

1.7 
1.7 
1.7 
1.7 

0.927 0.927 
0.933 0.933 
0.91 I 0.911 
0.982 0.982 
1.221 0.954 
I .229 0.957 
I.253 0.954 
1.276 0.980 
1.438” 1.070 

0.548 
0.370 
0.407 
0.197 
0.157 
0.160 
0. I76 
0.174 
0.217 

16.0 0.144 0.151 0.253 
16.1 0.133 0.108 0.128 
16.3 0.169 0.106 0.132 
16.4 0.153 0.03 1 0.013 
16.1 0.118 0.025 0.014 
16.1 0.113 0.029 0.017 
16.0 0.126 0.032 0.018 
16.3 0.140 0.024 0.009 
15.8 0.162 0.036 0.019 

14.0 
12.8 
28.3 
18.2 
31.3 
21.2 
13.9 
31.5 

“C‘RAY X-MP:48. 
” For /I = I .7 darcies ’ 

581/69/2-IO 
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solution of the p=O case. Figure 4 shows the parameter estimates for the cases 
given in Table III. Based on the non-regularized estimation, our algorithm suggests 
KS as 1.7, 2.5, 2.2, and 5.0 darcies ’ for the spline grid systems given above. Non- 
regularized estimates shows ill-conditioning near the boundaries for the N,, x N,., = 
15 x 10 and 12 x 9 cases, but the regularized estimates are insensitive to the choice of 
spline grid except for the 6 x 5 spline grid, for which the parameter estimates are 
incorrect no matter whether regularization is applied or not. (See Table III.) CPU 
times in Table III show that reducing the number of spline coefficients, N,, x N,,, 
does not increase the rate of convergence. Thus a grid system on the order of that 
used to solve the PDEs can be employed for the parameter estimation by 
regularization without introducing the ill-conditioning that is prevalent in non- 
regularized algorithms. The regularization parameter depends on the spline grid 
system, such that a finer grid system generally yields a smaller value of 8. 

6.3. EJfcct of Stabilizing Functional 

The main difference between Tikhonov’s and Locker and Prenter’s stabilizing 
functionals is the value of the weighting coefficient co. We will test the cases co = 1, 
0.3, 0.1, and 0 and [, = [? = c3 = 1 for the true k shown in Fig. 2c, 

k(x,y)=0.3-0.1 sin($)s (21) 

In this case it is advantageous to have a large amount of data so that effects of the 
number of data are absent. Consequently, we use 1500 noisy pressure data 
measured over a period 0 6 t < 6.3 yr (100 data at each of the 15 wells). Step 1 
produces the flat initial guess of k = 0.28 darcy. The regularization parameter is 
then chosen based on our algorithm using i,, = 0, which is 2.1 darcies 2. Table IV 
shows that the larger co leads to a mismatch of data (JIss)), an underestimate of the 
parameter (J!$), and ill-conditioning of parameter estimates (J$ and .@). It can 
be deduced from this example that, with Tikhonov’s stabilizing functional, increas- 

TABLE IV 

Effect of Stabilizing Functional on the Estimation of k Given by Eq. (21) 

io 
B CPU time 

(darcies ‘) JSM J,, JSI J;; J:‘,! JL2, J::’ (SY’ 

0 0.952 0.952 13.6 0.102 0.100 0.247 150.5 
1 2.1 26.69 2.877 11.21 10.8 0.169 0.129 0.158 124.3 

0.3 2.1 9.563 1.237 3.920 12.5 0.088 0.041 0.038 79.6 
0.1 2.1 4.078 1.006 1.447 13.4 0.075 0.023 0.012 66.4 
0 2.1 1.187 0.963 0.105 13.8 0.075 0.020 0.010 XI.1 

True k 0.973 13.9 0.106 0.030 0.008 

‘I CRAY X-MP/48. 
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FIG. 5. Effect of stabilizing functional on the estimation of k given by Eq. (21). (--) true k, (---) 
/j=O, (----) io= I and j=Z.l darcies-*, (---) i,,=O.3 and /?=2.1 darcies- ‘, (--~-) io=O.l and 
/I = 2. I darcies 2, (----) co = 0 and /J’ = 2.1 darcies 2. 

ing fl will amplify the mismatch of data and the underestimate of the parameter; 
while decreasing /II increases ill-conditioning of the estimates. One possible way to 
improve the parameter estimates is by decreasing lo, the limiting case of which is 
use of a stabilizing functional with the differential operator given by Eq. (15). 
Figure 5 shows how the estimates vary as lo changes. 

6.4. l?ffbct of Regularization Parameter 

We now wish to study the effect of the value of the regularization parameter p on 
the estimation. To do so we employ the true k given by Eq. (21) and return to the 

TABLE V 

Effect of Regularization Parameter on the Estimation of k Given by Eq. (21) 

/I 
(darcies ‘) JSM J,,, JST JB? J::’ 

CPU time 

(s)” 

0 

0.09 I 

0.183 
0.367 
0.734 
1.468h 
2.935 
5.870 
11.74 

True X 

0.924 
0.946 
0.967 
0.993 
I.062 
1.105 
I.248 
I.499 
1.931 

0.924 0.630 13.6 0.118 0.139 0.372 
0.925 0.23 1 13.7 0.106 0.059 0.066 
0.929 0.207 13.7 0.098 0.054 0.055 
0.932 0.166 13.7 0.096 0.040 0.030 
0.937 0.170 13.7 0.091 0.043 0.036 
0.950 0.106 13.8 0.075 0.020 0.010 
0.973 0.094 13.8 0.067 0.018 0.009 
1.023 0.08 1 13.7 0.058 0.015 0.007 
1.126 0.069 13.6 0.045 0.013 0.006 
1.041 0.144 13.9 0.106 0.030 0.008 

33.7 
21.7 
13.4 
16.0 
8.4 

34.2 
29.2 
31.5 
62.8 

“CRAY X-MP/48. 
‘l /I based on the proposed algorithm 
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FIG. 6. Effect of regularization parameter on the estimation of k given by Eq. (21) (in darcies ‘). 

case of 300 data over the period of 1.3 yr. The results are summarized in Table V. 
The value of fl based on the non-regularized estimation is 1.468 darcies ‘. Other 
values of /I’ were chosen so that they form a geometric sequence increasing and 
decreasing by factors of 2 around this value. If fi ~0.091 darcies 2, the 
minimization of J,, , which is started from the result of the non-regularized 
estimation, is completed in one iteration since the regularization component (/?JST) 
is negligible compared to J,,. If j > 11.74 darcies ‘, the values of JLs become very 
large, and the algorithm experiences convergence difficulties. For /I = 0.734 
darcies ‘, the algorithm converges faster than any of the other cases. On the whole, 
J,, increases and JST and its component terms (except Jr;) decrease as /j increases. 
Figure 6 shows the effect of the values of fl on the estimated surface. We note that 
at the value of /I based on our algorithm, neither is the regularization effect 
negligible nor is there significant data mismatch, and the estimated surface shown 
in Fig. 6 approximates the true surface shown in Fig. 2c. 

6.5. Stuhilit>~ c~f Regularized Solution 

The most important feature of regularization is the stability of the solution so 
that small perturbations in measured data (random measurement error in the 
pressure data) imply small perturbations in the parameter estimates. To explore the 
stability of the parameter estimates, we use the absolute permeability given by 
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Frc;. 7. Stability of solution for the estimation of k given by Eq. (19). Contour values are (-) 
/i = 0.2 darcies, (---) k = 0.24 darcies, (---) k = 0.28 darcies, (---) k = 0.32 darcies, (----) k = 0.36 dar- 
ties, (---) k = 0.4 darcies. 

TABLE VI 

Stability of Solution for the Estimation of k Given by Eq. (19) 

Data 
set 

1 
2 
3 
I 
2 
3 

True X 

B 
(darcies ‘) JSM Jr, Jsr J&Y 

0 0.913 0.913h 0.664 13.9 
0 0.922 0.922’ 0.922 13.8 
0 0.997 0.997” 0.442 13.7 
I .o 0.988 0.935h 0.053 14.0 
I.0 0.983 0.942’ 0.041 13.9 
1.0 1.032 0.997” 0.035 13.9 

0.027 14.0 

0.127 0.157 0.380 
0.132 0.202 0.588 
0.088 0.105 0.250 
0.030 0.012 0.010 
0.024 0.006 0.015 
0.02 1 0.005 0.007 
0.027 0 0 

CPU time 
(SY 

36.5 
35.7 
22.0 
35.4 
37.6 
37.8 

“CRAY X-MPi48. 
’ J,, for true k is 1.070. 
’ J,, for true k is 1.041. 
“.I,, for true k is 1.099. 
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Eq. (19) and three different simulated noisy pressure sequences scaled so that the 
root mean square observation error is about 0.3 x lo5 Pa. Figure 7 shows that the 
non-regularized estimates are unstable over the entire reservoir domain while the 
regularized estimates exhibit instability only in the regions near the boundaries 
(X =0 and X=X,) of the reservoir where the flow is negligible. Table VI shows the 
performance data for the three different data sets. Note that the differences between 
the values of Jsr and its terms (except .I&‘) for the different data sets are reduced by 
a factor of 10 as a consequence of regularization. 

7. CONCLUSIONS 

The purpose of this study has been to develop an algorithm for parameter 
estimation by regularization and spline approximation for two-phase petroleum 
reservoirs. 

The algorithm is divided into three steps. Step 1 seeks a flat initial guess of the 
parameter. This step avoids convergence difficulties that may arise in estimating 
spatially varying parameters from a poor initial guess. Usually this step converges 
within a few (4-6) iterative solutions of the reservoir and adjoint equations. Step 2 
is devoted to nonregularized (/I = 0) conventional least-squares estimation by spline 
approximation. The spline grid system is chosen so that the number of spline coef- 
ficients is the same as the number of grid cells for the solution of reservoir PDEs 
unless the number of observed data is less than the number of unknown coefficients. 
The parameter estimates from this step are usually ill-conditioned and dependent 
on the choice of the spline grid. This step usually requires 2C40 iterative solutions 
of the reservoir and adjoint equations to reduce the gradient value of the perfor- 
mance index to l/lOOOth of its starting value. In this step, approximate values of the 
upper bounds of J,, and J,, are then estimated. In Step 3, parameter estimation by 
regularization and spline approximation is carried out to obtain the final solution. 
In this step, the regularization parameter is selected as the ratio of Jr, to Js, deter- 
mined in Step 2, and Locker and Prenter’s stabilizing functional is used. The 
algorithm generally converges after 2040 iterative solutions of the reservoir and 
adjoint equations. 

For non-regularized estimation, the parameter estimates are sensitive to the 
choice of the spline grid, whereas for regularized estimation, the results are found to 
be insensitive to the choice of the spline grid (unless it is too coarse to properly 
represent the spatial variation). Since the value of the regularization parameter is 
dependent on the dimension of the spline grid, it is recommended that one use a 
grid system for spline approximation such that the number of spline coefficients is 
approximately equal to the smaller of the number of PDE grid cells or the number 
of observation data. Locker and Prenter’s stabilizing functional with gradient 
operator was found to be superior to Tikhonov’s stabilizing functional from the 
point of view of numerical performance. 

The algorithm does not require any u priori information on the parameter to be 
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estimated except that the parameter can be properly represented by a spline 
approximation. The parameter estimates based on the algorithm are shown to be 
superior to conventional non-regularized least-squares estimation in the sense of 
stability to the observation error and initial guess dependency. 

APPENDIX A: FINITE DIFFERENCE RESERVOIR EQUATIONS 

The basic model consists of two coupled nonlinear PDEs for pressure p and 
water saturation S,. It is customary to discretize them using finite difference 
approximations to yield a set of nonlinear algebraic equations. We solve these 
equations sequentially at each time step, i.e., solve the equations for pressure first, 
then for water saturation, and repeat these procedures until the solution converges 
Cll. 

In order to solve the reservoir PDEs, Eqs. (2), (3) and (7) are discretized to give 
implicit time finite difference approximation by 

R;,z-Q,$ 
6 

(L.,+(.r)s;,(p:‘-p; ‘)-Q,$+(S:l,-S,;‘) 
r, 

- c Q,,,G,,,(P:‘-P;)+ 2 y:.+ 
/CJ, h=l 

=o (Al) 

-,z Pi,j~b~,,,(P:‘-P:‘) + f qi, + 
z = I 

=o (A21 

for n = l,..., N, and i E N defined by 

NE {iji=i,+N,(i.,.- 1), i,= I,..., N,, i.,,= l,..., N,.} 

= {l,..., N), (A3) 

where N = N,N,. and i, and i.,, denote PDE grid blocks along x- and y-directions, 
respectively, and the index set Ji defined for each ie N by 

J,={jJj=i-N,,i-l,i+l,i+N,}nN (A41 

is introduced for simplicity, with initial conditions 

PP=Po (A51 

so,, = s,, . (A61 



416 LEE AND SEINFELD 

In Eqs. (Al ) and (A2) the mobilities ,?;:.,, and ,I:;,/, i= l,..., N, are given by 

where the algebraic average is used for the absolute permeability 

k =k+k, 
J,f 2 (A9) 

and upstream weighting is used for the relative permeabilities for the stability of 
numerical integration given by 

K,, = k,(S’:,) and k’:,,, = k,,(S’kn) if p;>p; 

K,,, = kr,G’:.,) and C,., = k,,(.Y:,) otherwise. 
(AlO) 

The porosity distribution at pressure psc, denoted by &., is known where SC 
denotes “standard condition.” Compressibility effects are included by using the 
so-called formation volume factor of rock B,, 

B,(p) = e”‘P” P), (Al 1) 

where in evaluating Br an explicit time difference scheme is used in the finite dif- 
ference approximation. 

First order variations of Eqs. (Al ), (A2) with respect to S, are given by 

6R;,r + Q,-+ (c, + cc) 6S;,(p:‘-p:‘- ‘) + Q, + SS;, 
c 

(A121 

(.413) 

to solve the finite difference equations for S,. 
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At time step t,, = ndt, n = l,..., N,, take initial guesses of p: =p; ’ and F,( = S,;, ’ 
for i = l,..., N and solve 

R;,+ Rbf,=O (A141 

for p;, i = l,..., N, where R,‘s and R,‘s are given in Eqs. (A 1) and (A2), respectively. 
Equation (A14) does not include time derivative terms of S,, and is a linear pen- 
tadiagonal system with respect to p so that it is easily solved by the Iterative Alter- 
nate Direction Implicit (IADI) method. 

Second, solve 

(co + c,)(l - X,) R,, _ (cw + Cf) x, R” = () 
c;: w, 

c;: 
0, 

for Sk,, i = l,..., N, by Newton’s method since Eq. (A15) is nonlinear with respect to 
S,. Equation (A15) does not include time derivative terms of p and the total com- 
pressibility, c;:, is given by 

c;: = (c, + Cf) s’;, + (c, + cy)( 1 - s’y. (A161 

Taylor series expansion of Eq. (Al 5) up to first order gives 

for i= l,..., N, where the first order variation terms, dR,‘s and 6R,‘s, are given in 
Eqs. (A 12) and (Al 3), respectively. Equation (A 17) is a linear pentadiagonal system 
with respect to 6S, and is solved for SS;,, i= l,..., N, by the IADI method. 

Then we compare the current iterate of p: and SW,, i= l,..., N, with the previous 
ones, and repeat solving Eqs. (A 14))( A 17) until convergence. 

APPENDIX B: FUNCTIONAL DERIVATIVE OF J,, 

We present the finite difference version of the first order necessary condition for a 
minimum of the least-squares discrepancy function defined by 

J,,= ’ & ,,f , .I?, (W,(P(-~,., Y,., f,) - wb”):!)* + W,(F,“(X,., Y,, t,,) - (F:;bd):)*), 

where (P“~“); and (F$); are the pressure and water-to-oil ratio (= S,/S,) data 
measured from the vth observation well located at (x,, y,,), v = l,..., N,, at time 
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t,,, n = l,..., N,. The corresponding Hamiltonian of the conventional least-squares 
problem is 

Collecting terms that include 6~; yields 

R;,s Q,% ((c,+cr) s,;;‘$;,’ ’ + (co+ cr)(l -Sk;‘) $‘d,+‘) 
f! 

(B3) 

and terms that include 6S;,, yields 

- ((Cw + Cr) $i,- (co + (.r) 9%,) Q, $+ (P:‘-P:’ ‘1 
r, 

- 1 Qi>,@J w+iq+gij he-tfq)(P:‘-P:) 
,e J, w, wi 

+2w, 

=o (B4) 

for i E N and n = N,, N, - l,..., 2, 1, with terminal constraints 

(B5) 

(B6) 

for i E N. The functional derivative of J,, with respect to k,, i E N, is given by 
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The adjoint system equations are solved sequentially, i.e., Eq. (B3) is solved for a 
new variable I/,, defined by 

and Eq. (B4) for $, defined by 

where the IADI method is employed for the solution of each equation, repeating 
this procedure until the solution converges. From aL,,/dk,, i= l,..., N, and the 
derivative of J,, with respect to the spline coefficients we can compute the 
derivative of JSM with respect to each spline coefficient [ 121. 
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